
Identifying Machine Learning Algorithms

to Predict Pollution, Weather, and

Traffic Conditions for Smart City

Applications

Final Report

Muhammad Hasif Bin Muhammad Uzir

Supervisor: Dr Miguel Rodrigues

Second Assessor: Dr Christos Masouros

March 2018

Department of Electronic and Electrical Engineering

University College London

ii

Abstract

A smart city is an area with an urban population that leverages technology to manage resources

and assets using information obtained from various electronic sources to efficiently improve

quality of life. An interesting development is the increased interest in utilising machine learning

to process large amounts of data to identify trends and predict the future. However, there is the

question of how to leverage multiple data sources to predict relevant parameters, what algorithms

are suitable and which data sources can be useful. These are all emerging problems involved in

the prediction various parameters such as pollution levels, traffic conditions and weather. The

objective of this research project is to explore the relationship between data inputs, strength of

various algorithms and develop a machine learning algorithm that can combine multiple data

sources in order to predict the future. This can then be used to leverage real-time data and used in

the real-world.

First, the performance of a system with a single input is compared against a system with multiple

inputs to identify whether there exists a correlation between data. Then, the performance of four

algorithms are compared to determine suitability for smart city applications. The better algorithm

is then used in a system to leverage real-time data as an application to prove real-world suitability.

It was found that a system with multiple inputs performed better than as system with only a single

input, suggesting a correlation between inputs. Thus, in the future, it is better for smart cities to

leverage various data types to better predict parameters.

The performance of four different methods in time-series predictions are compared, which are

Moving Average, Autoregressive Integrated Moving Average, Recurrent Neural Network and

Sequence-to-Sequence (Seq2seq). It was concluded that the Deep Learning methods provided far

better performance especially the Seq2seq model, with less errors committed. However,

leveraging machine learning required a significant amount of computing power and the system

requires heavy training and as well as further development for better predictions.

In conclusion, a system utilising the Seq2seq algorithm with multiple inputs will provide the best

performance in predicting pollution, weather and traffic patterns in a smart city. It is also possible

to develop a system leveraging real-time data for applications in the real world, however further

development is required.

iii

Declaration

I have read and understood the College and Department’s statements and guidelines concerning

plagiarism.

I declare that all material described in this report is all my own work except where explicitly

individually indicated in the text. This includes ideas described in the text, figures and computer

programs.

Name: Muhammad Hasif Bin Muhammad Uzir

Signature:

Date: 6 March 2018

iv

Table of Contents

 Page

Abstract ii

Declaration iii

Introduction 1

Literature Review 3

Theory 5

Moving Average 5

Autoregressive Integrated Moving Average 5

Recurrent Neural Network 6

Sequence-to-Sequence 7

Methodology 8

Software 8

Datasets 8

Comparing Single Inputs Against Multiple Inputs 12

Machine Learning Algorithms Comparison 14

Real-world Applications 16

Results and Analysis 17

Comparing Single Inputs Against Multiple Inputs 17

Machine Learning Algorithms Comparison 24

Real-world Applications 28

Conclusion 29

References 30

Appendix 31

A. Moving Average Model Python Source Code 31

B. ARIMA Model Python Source Code 32

C. RNN Model Python Source Code 34

D. Seq2seq Model Python Source Code 37

1

Introduction

Machine Learning allows computers to discover patterns and learn without being explicitly

programmed to do so. Smart Cities, are urban areas utilising electronics and data to manage its resources

efficiently. Today, especially with the advent of Big Data and Internet of Things (IoT), the role of

Machine Learning becomes increasingly important to allow us to sift through vast amounts of data to

better predict the future.

For efficient utilisation of Machine Learning in a Smart City, several emerging problems exist. First,

are multiple data sources useful in predicting relevant smart city parameters such as pollution, traffic

and weather? If so, how can they be leveraged? Is there a correlation between data to allow better

predictions? There is also the question of what algorithms are suitable for a time-series prediction of

future results. This is important because as Big Data becomes increasingly widespread, there exists

potential to allow more efficient applications in a Smart City using Machine Learning, such as allocating

resources or simply letting citizens know when a good time to avoid rainfall is.

There have been many studies suggesting the potential of Machine Learning for usage in smart cities

and leveraging Big Data. The Literature Review explores a selection of studies done in the field of

Smart Cities and Machine Learning.

In this report, machine algorithms for the purpose of smart cities, will be explored in terms of its inputs,

the algorithms and real-world applications. First, a comparison is done between a single input system

against a multiple input system is done to identify the differences in performance as well identify if

there exists a correlation between data types typically obtained from a city. Then, the performances of

four different algorithms are compared to identify which is best suited for smart city applications and

their individual characteristics. Next, having identified the strengths of different algorithms, a machine

learning algorithm best suited to predict parameters in a smart city is developed. Finally, the system

will be modified to utilise real-time data. This serves as a proof-of-concept for a real-world application.

2

In the rest of the report, relevant literature and studies will be explored and compared. Then, a section

on theory is presented to familiarise the reader with theory essential to the report. The Methodology

section explains all tests done in detail which is then discussed in the Results and Analysis section. The

Methodology also provides a detailed plan on completing the report’s entire proposed studies. The Real-

world Applications section will provide an insight into utilising machine learning for real-time

predictions. Finally, the Conclusion will summarise all findings as well answer relevant questions

regarding the studies done and provide insight into future applications.

3

Literature Review

Deryckere [1] explores the potential of machine learning in a smart city and discovered that it can useful

in almost every aspect in city infrastructure. Machine learning allows patterns in both structured and

unstructured data to be recognised and create an optimised solution. However, potential may be limited

due to the fact that a certain model only fits a predetermined problem. He posits that the issue can be

overcome through the development of Cognitive Computing, however this is beyond the scope of this

paper. However, he doesn’t explore various algorithms that exist, which could provide sufficient

accuracy and suitability for a smart city. An interesting point in his dissertation, he introduces consumer

tools for implementing Machine Learning which can be easy to use. The ability for consumers to

leverage the power of Machine Learning is a recent development due to the exponential increase in the

computing power of consumer hardware. This paper in particular, uses TensorFlow, an open source

library from Google to create Machine Learning systems.

It was found that there is a strong correlation between weather-based attributes and traffic data [2] in a

paper by Chin, Callaghan and Lam. The degree of correlation was left unexplored. In the paper, the

relationship between bicycle hires in London and rainfall was analysed to provide an idea on the role

of Big Data and Machine Learning for smart cities. This strengthens the arguments for the usage of

Machine Learning as it is able to determine the relationship between seemingly unrelated datasets.

However, in the paper, classifier algorithms were used, which classified rainfall based on bicycle hires.

For time-series predictions, regressions are usually used as it takes continuous variables instead of class

labels. Thus, the performance comparison between algorithms provides little insight for the purpose of

this paper.

A paper by Zickus, Greig and Niranjan [3], presents a comparison between four machine-learning

methods; Logistic regression, decision tree, multivariate adaptive regression splines and neural network

in an attempt to offer machine learning as a practical alternative to deterministic and statistical methods

in predicting air pollution concentrations in Helsinki, Finland. It was discovered that with the exception

of the decision tree, which was described as significantly inferior, the performance of the other three

models were similar. It was noted that the Neural Network was prone to overfitting and sensitive to

noise in data due to its flexibility. It was the only method to identify precipitation, which may

significantly affect PM10 concentrations in the atmosphere as an important input feature. This implies

the neural network was more adept in more complex input variable selection, an important behaviour

when dealing with big data for smart cities. However, it was noted that that made it more sensitive to

errors in the input data which meant data processing was equally important to training the model.

Ultimately, the researchers concluded machine learning methods as a powerful analysis tool in

4

situations where the underlying equations are unknown or convoluted. Using machine learning, air

quality forecasts were not only improved, factors affecting atmospheric concentrations were also better

understood such as the case of precipitations. Other than several small differences, the performances of

a logistic regression, multivariate adaptive regression and neural network was similar and up to

whichever method is more easily interpreted. This paper provided valuable insight into neural networks

as it is one of the methods explored in this project.

References

[1] N. Deryckere, "What is the Potential of Machine Learning in a Smart City?", Undergraduate, Howest,

University College West Flanders, 2016.

[2] J. Chin, V. Callaghan and I. Lim, "Understanding and personalising smart city services using machine

learning, The Internet-of-Things and Big Data", IEEE, Edinburgh, 2017.

[3] M. Zickus, A. Greig and M. Niranjan, "Comparison of Four Machine Learning Methods for Predicting PM10

Concentrations in Helsinki, Finland", Water, Air and Soil Pollution: Focus, vol. 2, no. 56, pp. 717-729, 2002.

5

Theory

Moving Average

A Moving Average or rolling mean is a calculation model used to analyse several data points, usually

those of in time series. A series of averages of different parts of the dataset is calculated and recalculated

as more data points are added to the complete dataset. A fixed subset of a fixed size is used to obtain

and calculate the average of a series, the subset is then shifted in time by excluding the first data and

including the next data in the series. [1] The formula for a simple moving average is given below:

𝑀.𝐴 =
𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 +⋯+ 𝑎𝑛

𝑛

Equation 1 Simple Moving Average Formula

where a are values in a time series, n is size of subset

Thus, the variations in the mean are affected by variations in the data. It has an advantage of determining

and highlighting long-term trends by smoothing out short-term fluctuations.

Autoregressive Integrated Moving Average

The Autoregressive Integrated Moving Average (ARIMA) model is a statistical model for forecasting

time series data. By examining the differences between values in the series instead of the actual values,

future trends can be predicted through calculations. The model may include autoregressive and moving

average terms. In regards to the autoregressive terms, data from the time series is used to predict data

in the same time series. The variable of interest is regressed on its prior values in the dataset. The

moving average terms are used to predict future values within the same time series. Integrated means

that actual data values are not used and instead differences between the actual values and previous

values are referenced. Using the various features of the model, the model can fit data as well as possible.

A typical non-seasonal ARIMA model is denoted below [2]:

ARIMA (p, d, q)

Where p is the order of the AR model, d is the degree of differencing, and q is the order or the MA

model

6

Recurrent Neural Network

Recurrent Neural Networks (RNN) are a class of Artificial Neural Networks (ANN) able to make use

of sequential information. Compared to traditional ANN, which uses scalar inputs for learning and

assumes independency between all inputs and outputs, RNNs learn from a sequence of scalar inputs.

RNNs are recurrent because in every element of the sequence, the same task is performed and the output

is dependent on previous calculations. This allows the network to exhibit memory-like properties,

reusing information obtained from the sequence. [3] A RNN contains loops which allow information to

be reused as shown below:

Figure 1 Rolled Recurrent Neural Network depicting the output being “looped” back into the network.

If the RNN is unrolled or unfolded into a full network, the full operation can be seen below. As new

inputs from the sequence is obtained, each layer receives the output of the previous layer’s calculations

based on previous inputs.

Figure 2 Unrolled Recurrent Neural Network, allowing the network to simultaneously obtain new inputs and utilise the
computations based on previous inputs.

Outputs from each calculation is compared to test data (a subset of original data used in training) to

obtain an error rate. After comparison, backpropagation is undergone to adjust the weight of the network

and ensure optimal learning.

The most commonly used type of RNNs are Long Short-Term Memory (LSTM). Each LSTM is a

building block for layers of a RNN. Internally, each LSTM cell decide what information is necessary

to retain which is then combined with the previous state, current memory and input. LSTMs are suitable

at modelling short-term memory which can last for a long period of time.

7

Sequence-to-Sequence

Sequence-to-Sequence (seq2seq) is a model utilising two connected Long Short-Term Memory (LSTM)

Recurrent Neural Networks (RNN). It is also known as an RNN Encoder-Decoder. Seq2seq performs

well in a variety of tasks such translation and image captioning. The Seq2seq model maps arbitrary-

length sequences to another arbitrary-length sequence. [4] This solves the spatial problem of other

architectures requiring a fixed sized for the input and outputs.

Based on the diagram above, two RNNs are connected together, with an Encoder RNN on the left, and

the Decoder RNN on the right. The encoder RNN receives the entire input sequence, encoding them

into a fixed-length vector until a final token is received, signifying the end of the sequence. The Encoder

RNN’s internal state will change as it receives each input until the final token is received. The vector is

then passed to the Decoder RNN to map into an output sequence. The Decoder RNN’s internal state

also changes as it decodes the sequence. Finally, another final token is outputted, signifying the end of

the output sequence.

This model is used especially for the Comparing Single Inputs Against Multiple Inputs part of the

project. Seq2Seq is used to build a time series forecasting model to predict parameters.

References

[1] I. Lurie, "How do I calculate a rolling average?", Portent, 2009. [Online]. Available:

https://www.portent.com/blog/analytics/rolling-averages-math-moron.htm.

[2] "Moving Average Models (MA models)", Applied Time Series Analysis, 2018. [Online]. Available:

https://onlinecourses.science.psu.edu/stat510/node/48.

[3] D. Britz, "Recurrent Neural Networks Tutorial, Part 1 – Introduction to RNNs", WildML, 2018. [Online].

Available: http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/.

[4] D. Nag, "seq2seq: the clown car of deep learning – Dev Nag – Medium", Medium, 2018. [Online]. Available:

https://medium.com/@devnag/seq2seq-the-clown-car-of-deep-learning-f88e1204dac3.

Figure 3 A basic diagram of the seq2seq model with Encoder RNNs on the left and Decoder
RNNs on the right, translating an English sentence into Japanese

8

Methodology

Software

For the purpose of this research project, the Python language and several libraries are used to develop,

run and analyse machine learning algorithms. The most important library used is TensorFlow, an open

source library used in various applications and especially in machine learning and neural networks.

Computations are done using an architecture involving nodes, which represent operations and tensors

representing arrays of values. A computational graph is then created consisting of nodes which pass

tensors from one another. Other libraries used are pandas, Matplotlib, NumPy and Seaborn.

Datasets

Next, datasets suitable towards the application of smart cities are used. These will be used as the inputs

to be used in the machine learning system to predict parameters. Three types of data categories have

been identified for use; Pollution, Weather, Traffic and Time. All data are hourly recorded data between

31st May 2013 to 31st May 2017.

The location used in all datasets will be restricted to Marylebone Road, London. This location was used

due to the availability of useful datasets compared to other locations in London. Marylebone Road is

classified as a roadside site, meaning that there is a road within 5 meters of measurements recorded.

9

Pollution data was obtained from the London Air Quality Network (LAQN) [1][2] and the Automatic

Urban and Rural Network (AURN) [3]. From the datasets, several species of pollutants are available;

Carbon Monoxide, Nitric Oxide, Nitrogen Dioxide, Oxides of Nitrogen, Ozone, PM 10 Particulates (by

Tapered Element Oscillating Microbalance (TEOM) and Filter Dynamic Measurement System

(FMDS)), and PM 2.5 Particulates (by FDMS), and Sulphur Dioxide. Below are details on the pollutant

species:

Name Units Source

Carbon Monoxide mg/m3 LAQN

Nitric Oxide µg/m3 LAQN

Nitrogen Dioxide µg/m3 LAQN

Oxides of Nitrogen µg/m3 LAQN

Ozone µg/m3 LAQN

PM10 Particulates (by TEOM) µg/m3 LAQN

PM10 Particulates (by FDMS) µg/m3 LAQN

PM2.5 Particulates (by FDMS) µg/m3 LAQN

Sulphur Dioxide µg/m3 AURN

Table 1 Pollutants with units and sources

Weather data was obtained from the AURN [3]. Weather data includes Temperature, Wind Direction,

and Wind Speed. Below are details on the data:

Name Units Source

Temperature ⁰C AURN

Wind Direction ⁰ (from North) AURN

Wind Speed ms-1 AURN

Table 2 Weather data with units and source

LAQN also provides weather data as well, however, the data is incomplete, with recorded data available

only about 70% of the time for the chosen period of this project.

10

Currently, Transport for London (TfL) does not make hourly traffic counts readily available online

however, the hourly traffic counts for Marylebone Road was able to obtained from a previous Freedom

for Information Request [4]. The data source is a Patched Automatic Traffic Counter Database. The

traffic data are the hourly counts for Marylebone Road running towards the East and West. Below are

details on the data:

Name Units Source

East - TfL

West - TfL

Table 3 Traffic data with units and source

Time was also used as an input. For this project, the hours from each day were used. Since all previous

data were hourly counts, time can be validly sourced from the LAQN, AURN or TfL datasets.

Name Units Source

Hour Hour LAQN/ AURN/ TfL

Table 4 Time data with units and sources

All data was then compiled into a single Comma-Separated Values (csv) file with each data type

populating its own column. Each data type will then be used as the features and labels desired.

11

One thing to take note of is that all data have at least a few empty cells, which suggest that data was not

recorded for the specific hour. All empty cells were then populated with zeros. Below is a comparison

on the completeness of each feature:

Name Empty Cells Validity

Carbon Monoxide 2160 93.85%

Nitric Oxide 474 98.65%

Nitrogen Dioxide 474 98.65%

Oxides of Nitrogen 474 98.65%

Ozone 897 97.44%

PM10 Particulates (by TEOM) 1481 95.78%

PM10 Particulates (by FDMS) 1517 95.68%

PM2.5 Particulates (by FDMS) 1084 96.91%

Sulphur Dioxide 2276 93.51%

Temperature 1386 96.05%

Wind Direction 1351 96.15%

Wind Speed 1350 96.16%

East 4 99.99%

West 4 99.99%

Hour 0 100%

Table 5 Comparison on data validity

12

Comparing Single Inputs Against Multiple Inputs

The first part of the project involves comparing the performance and accuracy of a system given a single

type of input against multiple types of inputs to predict a single output. The main purpose is to discern

whether there are correlations between different input types and whether having more features will lead

to a better label prediction.

A python file is created to generate results for this study. The file will read the dataset csv file, extract

relevant features, process them, build, train, run and test a TensorFlow model based on the Seq2seq

architecture. This model will predict labels for the last 30 days of the time series and compare the results

with the actual last 30 days.

First, all relevant modules are imported. Then, the csv file containing the data is read using pandas.

Then, the last 30 days of data is split to be used for testing with the remaining data used for training.

Then, relevant columns are extracted to be used for the features and label. To test single inputs, only

one column is used for both the feature and label. To test multiple inputs, multiple columns are chosen

for the features and a single column is chosen for the label. The chosen data is then normalised via the

z-score. This allows the comparison of two different features.

The training and test data is then transformed into 3D formats for time series use (size of batch, timestep,

feature dimensions). Size of batch determines the size of each batch used in training and testing.

Timestep determines the sequence length of inputs and outputs, and feature dimensions determine the

columns used for both the features and label.

Two functions are created to facilitate the generation of training and testing samples. In the function to

create training samples, random batches are sampled from the available data for training.

A Seq2seq model is then created which is able to take in any number of inputs and return a single output.

A TensorFlow session is run for training. The model is then trained using guided training. During

training the correct output is fed into the decoder at every time step. An example is of this is presented

below:

Figure 4 A Seq2seq model for training a model to translate an English sentence into Japanese.

13

The model is then tested using another TensorFlow session. During the testing, the true output is not

fed into the decoder, however, the output of the decoder is fed back and becomes the decoder input at

the next time step. An example of this is presented below:

The Mean Squared Error (MSE) is then calculated from the results by comparing it to the true results.

A new csv file is then created to save the results, containing the predicted and actual results to create

graphs. A plot based on the results is also created using Matlibplot for quick comparison when running

the file.

For the univariate case, the labels chosen are Nitric Oxide, East and Temperature. For the multivariate

case, the labels chosen are same as above, however all data were used as features. Each instance is run

five times, results recorded and the average MSE is obtained.

Figure 5 A Seq2seq model for testing, translating an English sentence into Japanese.

14

Machine Learning Algorithms Comparison

Next, the performance and accuracy of 4 different machine learning algorithms are compared to identify

how each system differs from one another in smart city applications. The same datasets as well as

hardware are used. The four algorithms used are Moving Average, Autoregressive Integrated Moving

Average, Recurrent Neural Network and Sequence-to-Sequence.

Moving Average

A python file is created to generate results. The file will read the dataset csv file, process and calculate

the moving average based on the data. The model will predict the hourly values for Nitrogen Dioxide

(NO2) pollution for the last 30 days of the time series and compare the results with the actual last 30

days.

First, the required libraries are imported which are pandas, matplotlib, and NumPy. Then, the csv

containing the dataset is read using pandas and the relevant data is saved to a variable. A window of 24

hours is set which will be the number of values averaged. The dataset is split into two sets; Actual,

which will be used in the prediction and Test, which will be used to compare the prediction’s accuracy.

The last 30 days of the dataset is then predicted by running a rolling mean function. This is done by

averaging the previous 24 values (signifying 24 hours) to predict the next hourly NO2 level. This is

repeated until 30 days’ worth of predictions are generated. The mean squared error is then calculated.

The results are saved to a csv file for further analysis and the entire process is repeated 5 times to obtain

the average MSE.

Autoregressive Integrated Moving Average

A python file is created to generate results. The file will read the dataset csv file, process the dataset

and run an ARIMA model to predict the last 30 days of the hourly NO2 levels. The results will be saved

to a separate csv file and the mean squared error is calculated for comparison with other algorithms.

First the relevant libraries are imported the most important library being the ARIMA model library from

statsmodels. The dataset is then read and saved to a new variable. The data is then split for running the

ARIMA model and validation. The final 30 days are to be used as validation to compare with the

predicted NO2 levels.

15

A function is then created to remove any seasonal differences in the data. The function subtracts values

from the same day a year ago to create a differenced series. The ARIMA model is then fit using the

built-in functions from the imported libraries. A multi-step out-of-sample forecast is then run to obtain

future NO2 values.

The data is then resplit to only obtain the last 30 days of the series. The MSE is calculated and the

results are then saved into a separate csv file for further analysis. The file is then run another 4 times

and the average MSE is obtained.

Recurrent Neural Network

A python file is created to generate results. The file will read the dataset csv file, process the dataset

and run an RNN to predict the last 30 days of the hourly NO2 levels. The results will be saved to a

separate csv file and the mean squared error is calculated for comparison with other algorithms.

First, the relevant libraries are imported as required. The dataset is then read using pandas and the date

and NO2 values columns are saved in different NumPy arrays. The data is then split into two for training

and resting. The final 30 days will be used for testing and the previous days are used for training using

TensorFlow.

The data is then normalised via a min-max normalisation. A graph is plot to ensure the data is properly

normalised. The computational graph used for the neural network is then initialised using default

parameters for a RNN.

A computational graph is then constructed using a Basic RNN Cell and basic functions native to

TensorFlow. Batches of training inputs and outputs are then generated using a new function that is

defined. 50 random values are taken as batches to be used in training. The RNN is the trained by running

a new TensorFlow session.

Once the RNN is trained and loss is minimised, predictions for the last 30 days of readings are generated

based on the previous session. The predictions are then denormalised and graphs are plotted to compare

with the actual values of NO2. The file is run for a total of 5 times to calculate and obtain the average

MSE.

16

Sequence-to-Sequence

The python file from the previous section, Comparing Single Inputs against Multiple Inputs is modified

to only predict NO2 levels. Based on the same dataset used by the previous 3 tests, the data is split,

processed and used to train a Seq2Seq model. The final 30 days are then predicted based on the trained

model and the MSE is calculated. The model is repeated another 4 times to calculate and record the

average MSE.

Real-world Applications

Finally, an application for real-time prediction of parameters will be explored and demonstrated as a

proof-of-concept. The system would leverage real-time data to predict future values. This would be

useful for real-world applications. Further details are provided in the Real-world Applications section

of the paper.

References

[1] "London Air Quality Network: Marylebone Road", Londonair, 2017. [Online]. Available:

http://www.londonair.org.uk/london/asp/publicdetails.asp?site=MY1.

[2] "London Air Quality Network: Marylebone Road FDMS", Londonair, 2017. [Online]. Available:

http://www.londonair.org.uk/london/asp/publicdetails.asp?site=MY7.

[3] "London Marylebone Road - Air Quality England", Airqualityengland, 2017. [Online]. Available:

http://www.airqualityengland.co.uk/site/exceedence?site_id=MY1.

[4] "FOI request detail: Hourly Traffic Counts Data for London Marylebone Rd", Transport for London, 2017.

[Online]. Available: https://tfl.gov.uk/corporate/transparency/freedom-of-information/foi-request-

detail?referenceId=FOI-0660-1718.

http://www.londonair.org.uk/london/asp/publicdetails.asp?site=MY1

17

Results and Analysis

Comparing Single Inputs Against Multiple Inputs

For each case, the average Mean Squared Error (MSE) of 5 runs will be used for analysis.

Nitric Oxide

The average MSE for the single input case is 0.467. The average MSE for the multiple input case is

0.276. This means that when multiple inputs are fed into the system, it predicted future Nitric Oxide

values more accurately compared to when Nitric Oxide is the only feature. The multiple input system

was 45.21% more accurate compared to the single input system.

Below are line graphs comparing the two cases. It can be observed from the first graph that the predicted

values vary wildly for the first 190 hours. This can perhaps be attributed to abnormally low Nitric Oxide

levels for that period, which the single input system was unable to predict. Compared to the second

graph, the prediction was very close, with the only major mistake being the missing peaks around the

79-hour mark. For the rest of the month, the single input model tended to oscillate wildly while the

multiple input model closely predicted the peaks and falls with less wild oscillations.

18

Figure 6 Predicted NO values against actual NO values for a period of one month using one input type

Figure 7 Predicted NO values against actual NO values for a period of one month using multiple input types

0

50

100

150

200

250

300

350

400
0

2
4

4
8

7
2

9
6

1
2

0

1
4

4

1
6

8

1
9

2

2
1

6

2
4

0

2
6

4

2
8

8

3
1

2

3
3

6

3
6

0

3
8

4

4
0

8

4
3

2

4
5

6

4
8

0

5
0

4

5
2

8

5
5

2

5
7

6

6
0

0

6
2

4

6
4

8

6
7

2

6
9

6

µ
g
/m

3

Hours

Predicted NO against Actual NO for One Month (Single)

Actual Predicted

0

50

100

150

200

250

300

350

400

0

2
4

4
8

7
2

9
6

1
2

0

1
4

4

1
6

8

1
9

2

2
1

6

2
4

0

2
6

4

2
8

8

3
1

2

3
3

6

3
6

0

3
8

4

4
0

8

4
3

2

4
5

6

4
8

0

5
0

4

5
2

8

5
5

2

5
7

6

6
0

0

6
2

4

6
4

8

6
7

2

6
9

6

µ
g
/m

3

Hours

Predicted NO against Actual NO for One Month (Multiple)

Actual Predicted

19

East

The average MSE for the single input case is 0.498. The average MSE for the multiple input case is

0.384. This suggests that the multiple input system performed better than the single input system, which,

in percentage terms is 25.81%.

Below are line graphs comparing the two cases. Generally, both systems performed well to predict the

general shape of the dips in the traffic. However, both cases incorrectly predicted the maximum dip and

peak in traffic. For the single input case, it can be seen that it incorrectly predicted the dip in traffic at

the 45th hour, predicting 300 when it actually was around 600. This point is perhaps an outlier in the

prediction. Also, the single input model tended to predict peaks at incorrect times as well as having less

steep peaks. In the actual data, traffic tended to peak and dip quickly. This can also be said of the

multiple input system, the predictions tended to miss the wild oscillations during peak hours. However,

it did not incorrectly predict peaks as often as the first case.

20

300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200

0

2
4

4
8

7
2

9
6

1
2

0

1
4

4

1
6

8

1
9

2

2
1

6

2
4

0

2
6

4

2
8

8

3
1

2

3
3

6

3
6

0

3
8

4

4
0

8

4
3

2

4
5

6

4
8

0

5
0

4

5
2

8

5
5

2

5
7

6

6
0

0

6
2

4

6
4

8

6
7

2

6
9

6

V
eh

ic
le

s

Hours

Predicted East Traffic against Actual East Traffic for One Month

(Single)

Actual Predicted

300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200

0

2
4

4
8

7
2

9
6

1
2

0

1
4

4

1
6

8

1
9

2

2
1

6

2
4

0

2
6

4

2
8

8

3
1

2

3
3

6

3
6

0

3
8

4

4
0

8

4
3

2

4
5

6

4
8

0

5
0

4

5
2

8

5
5

2

5
7

6

6
0

0

6
2

4

6
4

8

6
7

2

6
9

6

V
eh

ic
le

s

Hours

Predicted East Traffic against Actual East Traffic for One Month

(Multiple)

Actual Predicted

Figure 8 Predicted East Traffic values against actual East Traffic values for a period of one month using one input type

Figure 9 Predicted East Traffic values against actual East Traffic values for a period of one month using multiple input types

21

Temperature

The average MSE for the single input case is 0.165. The average MSE for the multiple input case is

0.150. This suggests that the multiple input system performed better than the single input system, with

an improvement of 9.64%.

Below are line graphs comparing the two cases. It is observed that the single input system incorrectly

predicted dips in the temperature and this can be seen at hours before 200. At hour 144, 168 and 192,

the system predicted that temperatures would dip below 0 when in reality, temperature never fell below

0 for the entire month. Compared to the multiple input system, the predicted results modelled the actual

results very closely, predicting the peaks and troughs in temperature with differences of less than 2⁰C.

Minor mistakes can be seen in incorrectly predicting the minimum temperature such as in hour 384 or

431.

Generally, both systems performed well to predict the general shape of the dips in the traffic. However,

both cases incorrectly predicted the maximum dip and peak in traffic. For the single input case, it can

be seen that it incorrectly predicted the dip in traffic at the 45th hour, predicting 300 when it actually

was around 600. This point is perhaps an outlier in the prediction. Also, the single input model tended

to predict peaks at incorrect times as well as having less steep peaks. In the actual data, traffic tended

to peak and dip quickly. This can also be said of the multiple input system, the predictions tended to

miss the wild oscillations during peak hours. However, it did not incorrectly predict peaks as often as

the first case. Overall, both systems still managed to predict temperatures quite well.

22

Based on the three cases above, it can be concluded that the Seq2seq model performed better when

given multiple features compared to if given only one feature. In all cases, there were improvements in

performance which suggests that all the data types are correlated. Although the system was only

predicting one type of parameter, having other seemingly unrelated data improved performance.

-5

0

5

10

15

20

25

30

0

2
4

4
8

7
2

9
6

1
2

0

1
4

4

1
6

8

1
9

2

2
1

6

2
4

0

2
6

4

2
8

8

3
1

2

3
3

6

3
6

0

3
8

4

4
0

8

4
3

2

4
5

6

4
8

0

5
0

4

5
2

8

5
5

2

5
7

6

6
0

0

6
2

4

6
4

8

6
7

2

6
9

6

⁰C

Hours

Predicted Temperature against Actual Temperature for One

Month (Single)

Actual Predicted

0

5

10

15

20

25

30

0

2
4

4
8

7
2

9
6

1
2

0

1
4

4

1
6

8

1
9

2

2
1

6

2
4

0

2
6

4

2
8

8

3
1

2

3
3

6

3
6

0

3
8

4

4
0

8

4
3

2

4
5

6

4
8

0

5
0

4

5
2

8

5
5

2

5
7

6

6
0

0

6
2

4

6
4

8

6
7

2

6
9

6

⁰C

Hours

Predicted Temperature against Actual Temperature for One

Month (Multiple)

Actual Predicted

Figure 10 Predicted Temperature values against actual Temperature values for a period of one month using one input type

Figure 11 Predicted Temperature values against actual Temperature values for a period of one month using multiple input
types

23

However, it is not known how closely correlated each data type since there is no metric of measurement.

Also, it also unknown whether there is a point of diminishing returns in having more features in the

system. This is important to know as to prevent wastage of resources when predicting parameters in a

smart city.

Another concern is that the improvements in the system can only be truly seen once the MSE is averaged

over a few tests. In every case, the model sometimes tended to perform worse in the multivariate case

compared to the univariate case. Below is a table depicting the MSE of each test:

Nitric Oxide

(Single)

Nitric Oxide

(Multiple)

East Traffic

(Single)

East Traffic

(Multiple)

Temperature

(Single)

Temperature

(Multiple)

0.415936 0.245533 0.596377 0.392438 0.135042 0.195992211

0.337178 0.227954 0.552437 0.310874 0.138709 0.177099777

0.388463 0.252087 0.394892 0.470995 0.16665 0.107781206

0.851243 0.26913 0.390394 0.355288 0.213263 0.116371464

0.342275 0.383372 0.556343 0.295365 0.171948 0.152445296
Table 6 MSE for each test case

For example, it can be seen that the best MSE from the single input Nitric Oxide case of 0.337 is better

than the worst MSE from the multiple input case, 0.383. This puts the reliability of the model into

question, however as explained above, once the values are averaged over a few tests, it is observed that

the multiple input case model’s performance was better.

Thus, for a smart city, it is better to utilise multiple inputs to predict any parameters as it can boost

performance. The datasets used are all real-world data suitable for smart cities.

24

Machine Learning Algorithms Comparison

For each case, the average Mean Squared Error (MSE) of 5 runs will be used for analysis.

Moving Average

The average MSE for the Moving Average system is 1262.462.

Below is a graph comparing the actual Nitrogen Dioxide (NO2) values against the values predicted by

the Moving Average method. In general, the algorithm was able to model the general trend changes in

the NO2 levels in the atmosphere. However, the system failed to make any significant predictions at

any point in the time series. Every single peak and trough was averaged to only map the overall trendline.

As a predictor of actual NO2 values, the model performed extremely poorly, and no useful information

can be obtained. However, it is a useful tool in obtaining the general trend change in NO2 levels as the

trendline seemed to cross the centre points of the actual trendline, meaning its average.

0

50

100

150

200

250

0

2
4

4
8

7
2

9
6

1
2

0

1
4

4

1
6

8

1
9

2

2
1

6

2
4

0

2
6

4

2
8

8

3
1

2

3
3

6

3
6

0

3
8

4

4
0

8

4
3

2

4
5

6

4
8

0

5
0

4

5
2

8

5
5

2

5
7

6

6
0

0

6
2

4

6
4

8

6
7

2

6
9

6

7
2

0

µ
g
/m

3

Hours

Predicted NO2 against Actual NO2 for One Month (Moving

Average)

Actual Predicted

Figure 12 NO2 values against actual NO2 values for a period of one month using a moving average model

25

ARIMA

The average MSE for the ARIMA system is 3672.03. Compared to the Moving Average method, the

MSE increased by 190.86%, indicating worse performance in predictions.

The line graph below depicts the comparison between predicted NO2 levels by the ARIMA model

compared to the actual values. Overall, the prediction line presents a very poor fit of the actual line. At

many points in the time series, the prediction was either too high or too low by at most 110 µg/m3.

Between the 216 and 264th hour, the predicted NO2 levels was considerably accurate, with the model

predicting the 43 µg/m3 low on the 244th hour. However, it did not model the peaks accurately being

short by at least 40 µg/m3. Other than that, on the 613rd hour, the system overpredicted the NO2 level

but placed the peak at the correct hour. This shows that the system shows promise in predicting smart

city parameters, however it requires better modelling.

The ARIMA method was modelled using an internal function provided by the library used, which may

be inaccurate given the dataset and requires manual modelling to determine the best ARIMA parameters.

Basing performance purely on the MSE may also not be accurate as it considers the mean values of the

errors. In the Moving Average method, it can be seen that the system either overpredicted or

underpredicted actual NO2 levels, since it was a rolling mean and that may prove to offset the MSE

value. When compared to the ARIMA method, there are times when the model proved to accurately

predict the pollution levels. Thus, the ARIMA model, if better modelled, may prove more suited for

smart city applications because in predicting parameters, a user would want accurate value prediction

rather than the general trend.

0

50

100

150

200

250

0

2
4

4
8

7
2

9
6

1
2

0

1
4

4

1
6

8

1
9

2

2
1

6

2
4

0

2
6

4

2
8

8

3
1

2

3
3

6

3
6

0

3
8

4

4
0

8

4
3

2

4
5

6

4
8

0

5
0

4

5
2

8

5
5

2

5
7

6

6
0

0

6
2

4

6
4

8

6
7

2

6
9

6

7
2

0

µ
g
/m

3

Hours

Predicted NO2 against Actual NO2 for One Month (ARIMA)

Actual Predicted

Figure 13 Predicted NO2 values against actual NO2 values for a period of one month using an ARIMA model.

26

Recurrent Neural Network

The average MSE for the Recurrent Neural Network (RNN) model is 0.524. Compared to the ARIMA

model, this represents a 99.99% decrease while compared to the Moving Average model, a 99.96%

decrease. This proves an immense improvement in performance when a neural network method is used

compared to statistical methods.

Depicted below is a line graph of the RNN model predictions against actual hourly NO2 levels for 30

days. In general, the RNN was able to accurately model the general trendlines of the pollution. At every

peak and trough, the prediction was correct and only missed a peak around the 75th hour and 700th hour.

The system was unable to predict the accurate highest NO2 levels between hour 0 and 250. At hour 75,

the unusually high NO2 level peaking at 142, was unable to be modelled, which suggest that the system

may require further training to predict anomalies in pollution patterns. The system also ignored the error

in the actual data at hour 367, which also suggests that the system may be more resistant to errors in

datasets. Overall, the system was able to accurately model the pollution levels and that further training

and modifications to the algorithm may further improve the accuracy in predictions.

Figure 14 Predicted NO2 values against actual NO2 values for a period of one month using a RNN.

0

50

100

150

200

250

0

2
4

4
8

7
2

9
6

1
2

0

1
4

4

1
6

8

1
9

2

2
1

6

2
4

0

2
6

4

2
8

8

3
1

2

3
3

6

3
6

0

3
8

4

4
0

8

4
3

2

4
5

6

4
8

0

5
0

4

5
2

8

5
5

2

5
7

6

6
0

0

6
2

4

6
4

8

6
7

2

6
9

6

µ
g
/m

3

Hours

Predicted NO2 against Actual NO2 for One Month (RNN)

Actual Predicted

27

Sequence-to-Sequence

The average MSE for the Seq2seq system is 0.466. This represents an 11.07% improvement in

performance compared to an RNN. Compared to the Moving Average and ARIMA methods, the system

showed similar improvements to that of the RNN. Thus, between the two artificial neural network

methods, the Seq2seq performed better than a standard RNN.

Based on the line graph below, the Seq2seq model accurately modelled the general trend of the hourly

NO2 levels. The method was able to predict every peak and trough with the exception of a misplaced

peak at hours 75 and 133. When graphed, the predictions were smoother compared to actual NO2 values,

which erratically oscillated more often with many sudden dips and rises in NO2 levels. As with the

RNN, the Seq2seq model also was unable to predict the unusually high NO2 level at the 75th hour. The

model also ignored the error in the dataset at hour 367. Thus, it can be concluded from the previous

observations that the method innately “smoothens” predictions, which may be somewhat inaccurate

compared to real-world conditions which is far more random. The model was also unable to predict

anomalies in real-world conditions, which may suggest that further training needed. It was also resistant

to errors in datasets because it ignored an empty value in the dataset, however, this may also be

detrimental if actual real-world conditions experienced a sudden change and the system did not model

this behaviour as it expects it to be an error. Overall, the system was able to accurately model the

pollution levels and that further training and modifications to the algorithm may further improve the

accuracy in predictions.

0

50

100

150

200

250

0

2
4

4
8

7
2

9
6

1
2

0

1
4

4

1
6

8

1
9

2

2
1

6

2
4

0

2
6

4

2
8

8

3
1

2

3
3

6

3
6

0

3
8

4

4
0

8

4
3

2

4
5

6

4
8

0

5
0

4

5
2

8

5
5

2

5
7

6

6
0

0

6
2

4

6
4

8

6
7

2

6
9

6

µ
g
/m

3

Hours

Predicted NO2 against Actual NO2 for One Month (Seq2seq)

Actual Predicted

Figure 15 Predicted NO2 values against actual NO2 values for a period of one month using a Seq2Seq model.

28

Real-world Applications

To prove the potential of machine learning for real-world applications utilising consumer-grade

hardware and software, a real-time program was developed to visualise predictions of pollution, traffic

and weather values in London. To create the program, HTML, jQuery (a JavaScript library), and an

external Python program was used. For the dataset, real-time data was only available for pollution and

weather in selected parts in London. Traffic data was only available through TfL and can only be

acquired through Freedom of Information requests, making acquiring real-time data impossible at this

time.

To generate real-time predictions, the Seq2seq python file was modified to continuously run and predict

readings every hour and update a csv file which was used as the input data for the real-time program.

Then, a HTML file was created for the actual program. Using jQuery, a library to visualise data as

heatmaps, heatmap.js was imported and used. The library will read data from the generated csv file to

produce heatmaps across London, however, the location for each data point had to manually set. Next,

using the Google Maps API, a client-side map of London was able to be imported. The API allows the

program to leverage standard Google Maps functions without the need for further coding.

Figure 16 A screenshot of the Visual Map program created to visualise real-time predictions of smart city parameters. The
program is visualising NO levels in Marylebone Road on the 1st March 2018.

Using the program, it was possible to visualise predictions on smart city parameters in real-time.

However, the heatmaps plotted may not be accurate as actual modelling of pollution spread was not

done at this time, though possible if given the data. The program also requires a constantly running

external program, which requires a significant amount of computing power for machine learning,

making it not lightweight. The program also was missing traffic predictions, as real-time data was

unavailable.

29

Conclusions

With regards to inputs, it was shown that having more features on average will improve the accuracy

of a machine learning system. There exists correlation between pollution, weather and traffic in a city

and this relationship should be taken advantage of. In the case of smart cities, there will be no shortage

of data with the advent of the Internet of Things (IoT). With more data types available, machine learning

systems will be able to better predict future parameters, thus ensuring better quality of life for the

general population. However, the degree of correlation between data is unknown and should be further

explored.

Other than that, it was proven that the performance of Deep Learning or Neural Network methods were

superior compared to that of statistical methods, as they were able to better predict parameters with less

errors. The Seq2seq model produced slightly better performance compared to the RNN model however

both methods exhibited similar drawbacks due to utilising the same Deep Learning architecture.

Predictions tend to be “smoother”; The volatility of real-world values were not accurately predicted.

However, they also tend to be more resistant to errors in the dataset. Utilising machine learning also

requires more computing power to produce results in a short amount of time. The advancement of

computing power will make machine learning an invaluable tool for every ordinary citizen of a smart

city of the future. The Seq2seq may also be improved through better modifications in the main code as

well as general improvements to the core TensorFlow library.

Machine learning also has real-world applications in providing real-time predictions in smart city

parameters. Using only consumer-grade hardware and software, it is now possible for anyone to

leverage machine learning in various applications. However, further development and better access to

real-time data will improve the usability and reliability of the program. Other than that, other algorithms

could also provide further insight to the potential of Machine Learning especially with the recent

development of Continuous Learning or Incremental Learning.

In conclusion, Machine Learning, especially Deep Learning techniques provide an avenue for better

predictions in traffic, weather and pollution. Further development will allow anyone to leverage

cognitive computing through readily available tools such as TensorFlow for a variety of real-world

applications. Machine Learning provides far better performance and accuracy and should be the focus

of future development to overcome the system’s weaknesses.

30

References

Literature Review

[1] N. Deryckere, "What is the Potential of Machine Learning in a Smart City?", Undergraduate, Howest,

University College West Flanders, 2016.

[2] J. Chin, V. Callaghan and I. Lim, "Understanding and personalising smart city services using machine

learning, The Internet-of-Things and Big Data", IEEE, Edinburgh, 2017.

[3] M. Zickus, A. Greig and M. Niranjan, "Comparison of Four Machine Learning Methods for Predicting

PM10 Concentrations in Helsinki, Finland", Water, Air and Soil Pollution: Focus, vol. 2, no. 56, pp. 717-729,

2002.

Theory

[1] I. Lurie, "How do I calculate a rolling average?", Portent, 2009. [Online]. Available:

https://www.portent.com/blog/analytics/rolling-averages-math-moron.htm.

[2] "Moving Average Models (MA models)", Applied Time Series Analysis, 2018. [Online]. Available:

https://onlinecourses.science.psu.edu/stat510/node/48.

[3] D. Britz, "Recurrent Neural Networks Tutorial, Part 1 – Introduction to RNNs", WildML, 2018. [Online].

Available: http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/.

[4] D. Nag, "seq2seq: the clown car of deep learning – Dev Nag – Medium", Medium, 2018. [Online]. Available:

https://medium.com/@devnag/seq2seq-the-clown-car-of-deep-learning-f88e1204dac3.

Methodology

[1] "London Air Quality Network: Marylebone Road", Londonair, 2017. [Online]. Available:

http://www.londonair.org.uk/london/asp/publicdetails.asp?site=MY1.

[2] "London Air Quality Network: Marylebone Road FDMS", Londonair, 2017. [Online]. Available:

http://www.londonair.org.uk/london/asp/publicdetails.asp?site=MY7.

[3] "London Marylebone Road - Air Quality England", Airqualityengland, 2017. [Online]. Available:

http://www.airqualityengland.co.uk/site/exceedence?site_id=MY1.

[4] "FOI request detail: Hourly Traffic Counts Data for London Marylebone Rd", Transport for London, 2017.

[Online]. Available: https://tfl.gov.uk/corporate/transparency/freedom-of-information/foi-request-

detail?referenceId=FOI-0660-1718.

http://www.londonair.org.uk/london/asp/publicdetails.asp?site=MY1

31

Appendix

A. Moving Average Model Python Source Code

24 Hour Moving Average Model

 #Import required libraries

 import pandas as pd

 import matplotlib.pyplot as plt

 import numpy as np

 from sklearn.metrics import mean_squared_error

 print("Trailing Moving Average for Marlebone Road")

 # Read dataset

 data = pd.read_csv('MaryleboneRoad_May_13_17_NO2.csv')

 x = data['NO2'].values

 # model variables

 # window, in hours, default: 24

 window = 24

 actual = [x[i] for i in range((len(x) - 24*30))] #Take actual values

 test = [x[i] for i in range((len(x) - 24*30), len(x))] #Take test

values, last 30 days

 prediction = list() # Make an empty list for predictions

 # Predict next 30 days by calculating the average

 for t in range(len(test)):

 length = len(actual)

 rolling_mean = np.mean([actual[i] for i in range(length - window,

length)])

 obsv = test[t]

 prediction.append(rolling_mean)

 actual.append(obsv)

 print('predicted=%f, expected=%f' % (rolling_mean, obsv))

 # Calculate and print MSE

 error = mean_squared_error(test, prediction)

 print('Test MSE: %.3f' % error)

 # Save results into a csv file so we can create nice graphs later

 df = pd.DataFrame({"Actual" : test, "Predicted" : prediction})

 df.to_csv("movingavg_results.csv", index=False)

 plt.plot(prediction, color = 'blue', label = 'Predicted')

 plt.plot(test, color = 'red', label = 'Actual')

 plt.legend(loc="upper left")

 plt.show()

32

B. ARIMA Model Python Source Code

ARIMA model

Import required libraries

import pandas as pd

import matplotlib.pyplot as plt

import numpy as np

from statsmodels.tsa.arima_model import ARIMA

from pandas.core import datetools

print("ARIMA model for Marylebone Road")

Read dataset

data = pd.read_csv('MaryleboneRoad_May_13_17_NO2.csv')

Split the data for running the ARIMA model and validaion for later

period (in hours) : default is 30 days

period = 30 * 24

split = len(data) - period

dataset = data[0:split]

validation = data[split:]

dataset.to_csv('dataset_arima.csv')

validation.to_csv('validation_arima.csv')

function to create a differenced series (subtract obsv from the same day

a year ago)

default interval is 1 year

this is to remove any seasonal differences

def season(dataset, interval = 24*365):

 new = list()

 for i in range(interval, len(dataset)):

 value = dataset[i] - dataset[i - interval]

 new.append(value)

 return np.array(new)

function to invert a differenced series

def inv_season(history, yhat, interval = 24*365):

 return yhat + history[-interval]

take only the relevant column

x = dataset.values[:,1]

y = validation.values[:,1]

differenced = season(x)

fit ARIMA model

model = ARIMA(differenced, order = (7,0,1))

model_fit = model.fit(disp = 0)

multi-step out-of-sample forecast

step = 24*30

forecast = model_fit.forecast(steps = step)[0]

Invert all results for usable data

history = [x for x in x]

hour = 1

for yhat in forecast:

 inverted = inv_season(history, yhat)

 print('Hour %d: %f' % (hour, inverted))

 history.append(inverted)

33

 hour += 1

resplit to only get the relevant hours

split = len(history) - step

predicted_final = history[split:]

Calculate MSE

print("Test MSE : ", np.mean((predicted_final - y)**2))

Save results into a csv file so we can create nice graphs later

df = pd.DataFrame({"Actual" : y, "Predicted" : predicted_final})

df.to_csv("results_arima.csv", index=False)

Plot a quick graph so we can see if eveything's all right

plt.plot(predicted_final, color = 'blue', label = 'Predicted')

plt.plot(y, color = 'red', label = 'Actual')

plt.title("Predicted against Actual for One Month")

plt.legend(loc="upper left")

plt.show()

34

C. RNN Model Python Source Code

Recurrent Neural Network Model

Import required libraries

import pandas as pd

import matplotlib.pyplot as plt

import numpy as np

import tensorflow as tf

print("RNN model for Marylebone Road")

Read dataset

df = pd.read_csv('MaryleboneRoad_May_13_17.csv')

Store Date and NO2 columns in numpy arrays

dates = df['Date'].as_matrix()

no2_lvl = df['NO2'].as_matrix()

Split the data for training and testing

period: How many hours before to split the data (default is 31*24 (one

month))

period = 31*24

train = no2_lvl[0:len(no2_lvl)-period]

valid = no2_lvl[len(no2_lvl)-period:len(no2_lvl)]

Normalise

train_min = min(train)

train_max = max(train)

train_normalised = (train - train_min) / (train_max - train_min)

plt.plot(train_normalised)

plt.show()

Initialise graph with proper parameters

n_inputs = 1 # number of nodes in input layer

n_hidden = 100 # number of nodes in hidden layer

n_outputs = 1 # number of nodes in output layer

Initialise batch parameters

batch_size = 50 # number of training samples to consider during each

training instance

n_steps = 12 # number of steps in every input Sequence

Initialise optimiser parameters

n_iterations = 10000 # number of training iterations to execute

learning_rate = 0.001 # training learning rate

Construct computational graph

tf.reset_default_graph()

X = tf.placeholder(tf.float32, [None, n_steps, n_inputs])

y = tf.placeholder(tf.float32, [None, n_steps, n_outputs])

cell = tf.contrib.rnn.BasicRNNCell(num_units=n_hidden,

activation=tf.nn.relu)

rnn_outputs, states = tf.nn.dynamic_rnn(cell, X, dtype=tf.float32)

stacked_rnn_outputs = tf.reshape(rnn_outputs, [-1, n_hidden])

stacked_outputs = tf.layers.dense(stacked_rnn_outputs, n_outputs)

outputs = tf.reshape(stacked_outputs, [-1, n_steps, n_outputs])

loss = tf.reduce_mean(tf.square(outputs - y))

35

optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)

training_op = optimizer.minimize(loss)

init = tf.global_variables_initializer()

saver = tf.train.Saver()

Generate batches of training inputs and outputs

def next_batch(input_sequence, batch_size, n_steps):

 i_first = 0

 i_last = len(input_sequence)

 i_starts = np.random.randint(i_first, high=i_last-n_steps,

size=(batch_size, 1))

 i_sequences = i_starts + np.arange(0, n_steps + 1)

 flat_i_sequences = np.ravel(i_sequences[:,:])

 flat_sequences = input_sequence[flat_i_sequences]

 sequences = flat_sequences.reshape(batch_size,-1)

 return sequences[:, :-1].reshape(-1, n_steps, 1), sequences[:,

1:].reshape(-1, n_steps, 1)

#Train the RNN

with tf.Session() as sess:

 init.run()

 for iteration in range(n_iterations):

 X_batch, y_batch = next_batch(train_normalised, batch_size,

n_steps)

 sess.run(training_op, feed_dict={X: X_batch, y: y_batch})

 if iteration % 1000 == 0:

 mse = loss.eval(feed_dict={X: X_batch, y: y_batch})

 print(iteration, "\tMSE:", mse)

 saver.save(sess, "./Marylebone_RNN")

#predictions

train_normalised_working = train_normalised

predictions_normalised = np.array([])

with tf.Session() as sess:

 saver.restore(sess, "./Marylebone_RNN")

 for pred in range(period):

 flat_X_new =

train_normalised_working[len(train_normalised_working)-

n_steps:len(train_normalised_working)]

 X_new = flat_X_new.reshape(1,-1).reshape(-1, n_steps, 1)

 y_pred = sess.run(outputs, feed_dict={X: X_new})

 predictions_normalised = np.append(predictions_normalised,

[y_pred[0, n_steps-1, 0]], axis=0)

 train_normalised_working = np.append(train_normalised,

predictions_normalised, axis=0)

#Denormalise predictions

predictions = predictions_normalised * (train_max - train_min) + train_min

no2_lvl_pred = np.array([train[len(train)-1]])

for pred in range(period):

 no2_lvl_pred = np.append(no2_lvl_pred, [no2_lvl_pred[pred] +

no2_lvl_pred[pred] * (predictions[pred] / 100)], axis=0)

no2_lvl_pred = np.delete(no2_lvl_pred, 0)

Plot a quick graph so we can see if eveything's all right

plt.plot(no2_lvl_pred, color = 'blue', label = 'Predicted')

36

plt.plot(valid, color = 'red', label = 'Actual')

plt.title("Predicted against Actual for One Month")

plt.legend(loc="upper left")

plt.show()

37

D. Seq2seq Model Python Source Code

Seq2seq model

 # Import required libraries

 import pandas as pd

 import matplotlib.pyplot as plt

 import numpy as np

 import seaborn as sns

 from tensorflow.contrib import rnn

 from tensorflow.python.ops import variable_scope

 from tensorflow.python.framework import dtypes

 import tensorflow as tf

 import copy

 import os

 # Read dataset

 df = pd.read_csv('MaryleboneRoad_May_13_17.csv')

 # Split the data for training and testing

 # period: How many hours before to split the data (default is 31*24

(one month))

 period = 31*24

 train = df.iloc[:(-period), :].copy()

 test = df.iloc[-period:, :].copy()

 # Copy useful columns from the dataset for use in modelling

 # Change the range in var X_train, X_test for features

 # Change the array in y_train and y_test for feature

 # Available features: Hour, NO, NO2, NOX, O3, PM2.5, PM10_TEOM, PM10,

CO, SO2, East, West, TMP, WDIR, WSPD

 # ['Hour'], ['NO'], ['NOX'], ['O3'], ['PM2.5'], ['PM10_TEOM'],

['PM10'], ['CO'], ['SO2'], ['East'], ['West'], ['TMP'], ['WDIR'], ['WSPD']

 X_train = train.loc[:, ['NO']].values.copy()

 X_test = test.loc[:, ['NO']].values.copy()

 y_train = train['NO'].values.copy().reshape(-1, 1)

 y_test = test['NO'].values.copy().reshape(-1, 1)

 # Normalise (z-transform) X, to be able to compare features

 for i in range(X_train.shape[1]):

 x_mean = X_train[:, i].mean()

 x_std = X_train[:, i].std()

 X_train[:, i] = (X_train[:, i] - x_mean) / x_std

 X_test[:, i] = (X_test[:, i] - x_mean) / x_std

 # Normalise (z-transform) y, to be able to compare with features

 y_mean = y_train.mean()

 y_std = y_train.std()

 y_train = (y_train - y_mean) / y_std

 y_test = (y_test - y_mean) / y_std

 # Sequence length paramters

 input_seq_len = 30

 output_seq_len = 5

 # Function to randomly generate training samples from the data

 def generate_train_samples(x = X_train, y = y_train, batch_size = 10,

input_seq_len = input_seq_len, output_seq_len = output_seq_len):

 total_start_points = len(x) - input_seq_len - output_seq_len

38

 start_x_idx = np.random.choice(range(total_start_points),

batch_size, replace = False)

 input_batch_idxs = [list(range(i, i+input_seq_len)) for i in

start_x_idx]

 input_seq = np.take(x, input_batch_idxs, axis = 0)

 output_batch_idxs = [list(range(i+input_seq_len,

i+input_seq_len+output_seq_len)) for i in start_x_idx]

 output_seq = np.take(y, output_batch_idxs, axis = 0)

 return input_seq, output_seq # in shape: (batch_size, time_steps,

feature_dim)

 # Fundction to generate test samples

 def generate_test_samples(x = X_test, y = y_test, input_seq_len =

input_seq_len, output_seq_len = output_seq_len):

 total_samples = x.shape[0]

 input_batch_idxs = [list(range(i, i+input_seq_len)) for i in

range((total_samples-input_seq_len-output_seq_len))]

 input_seq = np.take(x, input_batch_idxs, axis = 0)

 output_batch_idxs = [list(range(i+input_seq_len,

i+input_seq_len+output_seq_len)) for i in range((total_samples-

input_seq_len-output_seq_len))]

 output_seq = np.take(y, output_batch_idxs, axis = 0)

 return input_seq, output_seq

 # Generate training samples for features and labels

 x, y = generate_train_samples()

 # Generate training samples for features and labels

 test_x, test_y = generate_test_samples()

 # Paramters for graph building

 learning_rate = 0.01

 lambda_l2_reg = 0.003

 # LTSM cell size

 hidden_dim = 64

 # Number of features, based on columns copied

 input_dim = X_train.shape[1]

 # Number of labels, based on columns copied

 output_dim = y_train.shape[1]

 # Number of stacked LTSM layers

 num_stacked_layers = 2

 # Parameter to prevent gradient explosion

 GRADIENT_CLIPPING = 2.5

 # Function for tensorflow graph building using RNNs

 # Uses parameter feed_previous: False for training, True for testing

 def build_graph(feed_previous = False):

 # Clear default graph stack and resets

 tf.reset_default_graph()

 # Set tf Variable for steps

 global_step = tf.Variable(

 initial_value=0,

 name="global_step",

39

 trainable=False,

 collections=[tf.GraphKeys.GLOBAL_STEP,

tf.GraphKeys.GLOBAL_VARIABLES])

 weights = {

 'out': tf.get_variable('Weights_out', \

 shape = [hidden_dim, output_dim], \

 dtype = tf.float32, \

 initializer =

tf.truncated_normal_initializer()),

 }

 biases = {

 'out': tf.get_variable('Biases_out', \

 shape = [output_dim], \

 dtype = tf.float32, \

 initializer =

tf.constant_initializer(0.)),

 }

 # Define ops to create a seq2seq model

 with tf.variable_scope('Seq2seq'):

 # Encoder: inputs

 enc_inp = [

 tf.placeholder(tf.float32, shape=(None, input_dim),

name="inp_{}".format(t))

 for t in range(input_seq_len)

]

 # Decoder: target outputs

 target_seq = [

 tf.placeholder(tf.float32, shape=(None, output_dim),

name="y".format(t))

 for t in range(output_seq_len)

]

 # Feed "GO" token to the decoder

 # If dec_inp are fed into decoder as inputs, this is 'guided'

training; otherwise only the

 # first element will be fed as decoder input which is then

'unguided'

 dec_inp = [tf.zeros_like(target_seq[0], dtype=tf.float32,

name="GO")] + target_seq[:-1]

 # Define ops for a LSTM Cell

 with tf.variable_scope('LSTMCell'):

 cells = []

 for i in range(num_stacked_layers):

 with tf.variable_scope('RNN_{}'.format(i)):

 cells.append(tf.contrib.rnn.LSTMCell(hidden_dim))

 cell = tf.contrib.rnn.MultiRNNCell(cells)

 # From tensorflow seq2seq repo

 #

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/leg

acy_seq2seq/python/ops/seq2seq.py

 def _rnn_decoder(decoder_inputs,

 initial_state,

 cell,

 loop_function=None,

 scope=None):

 """RNN decoder for the sequence-to-sequence model.

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/legacy_seq2seq/python/ops/seq2seq.py
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/legacy_seq2seq/python/ops/seq2seq.py

40

 Args:

 decoder_inputs: A list of 2D Tensors [batch_size x

input_size].

 initial_state: 2D Tensor with shape [batch_size x

cell.state_size].

 cell: rnn_cell.RNNCell defining the cell function and size.

 loop_function: If not None, this function will be applied

to the i-th output

 in order to generate the i+1-st input, and decoder_inputs

will be ignored,

 except for the first element ("GO" symbol). This can be

used for decoding,

 but also for training to emulate

http://arxiv.org/abs/1506.03099.

 Signature -- loop_function(prev, i) = next

 * prev is a 2D Tensor of shape [batch_size x

output_size],

 * i is an integer, the step number (when advanced

control is needed),

 * next is a 2D Tensor of shape [batch_size x

input_size].

 scope: VariableScope for the created subgraph; defaults to

"rnn_decoder".

 Returns:

 A tuple of the form (outputs, state), where:

 outputs: A list of the same length as decoder_inputs of

2D Tensors with

 shape [batch_size x output_size] containing generated

outputs.

 state: The state of each cell at the final time-step.

 It is a 2D Tensor of shape [batch_size x

cell.state_size].

 (Note that in some cases, like basic RNN cell or GRU

cell, outputs and

 states can be the same. They are different for LSTM

cells though.)

 """

 with variable_scope.variable_scope(scope or "rnn_decoder"):

 state = initial_state

 outputs = []

 prev = None

 for i, inp in enumerate(decoder_inputs):

 if loop_function is not None and prev is not None:

 with variable_scope.variable_scope("loop_function",

reuse=True):

 inp = loop_function(prev, i)

 if i > 0:

 variable_scope.get_variable_scope().reuse_variables()

 output, state = cell(inp, state)

 outputs.append(output)

 if loop_function is not None:

 prev = output

 return outputs, state

 # From tensorflow seq2seq repo

 #

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/leg

acy_seq2seq/python/ops/seq2seq.py

 def _basic_rnn_seq2seq(encoder_inputs,

 decoder_inputs,

 cell,

http://arxiv.org/abs/1506.03099
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/legacy_seq2seq/python/ops/seq2seq.py
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/legacy_seq2seq/python/ops/seq2seq.py

41

 feed_previous,

 dtype=dtypes.float32,

 scope=None):

 """Basic RNN sequence-to-sequence model.

 This model first runs an RNN to encode encoder_inputs into a

state vector,

 then runs decoder, initialized with the last encoder state,

on decoder_inputs.

 Encoder and decoder use the same RNN cell type, but don't

share parameters.

 Args:

 encoder_inputs: A list of 2D Tensors [batch_size x

input_size].

 decoder_inputs: A list of 2D Tensors [batch_size x

input_size].

 feed_previous: Boolean; if True, only the first of

decoder_inputs will be

 used (the "GO" symbol), all other inputs will be

generated by the previous

 decoder output using _loop_function below. If False,

decoder_inputs are used

 as given (the standard decoder case).

 dtype: The dtype of the initial state of the RNN cell

(default: tf.float32).

 scope: VariableScope for the created subgraph; default:

"basic_rnn_seq2seq".

 Returns:

 A tuple of the form (outputs, state), where:

 outputs: A list of the same length as decoder_inputs of

2D Tensors with

 shape [batch_size x output_size] containing the

generated outputs.

 state: The state of each decoder cell in the final time-

step.

 It is a 2D Tensor of shape [batch_size x

cell.state_size].

 """

 with variable_scope.variable_scope(scope or

"basic_rnn_seq2seq"):

 enc_cell = copy.deepcopy(cell)

 _, enc_state = rnn.static_rnn(enc_cell, encoder_inputs,

dtype=dtype)

 if feed_previous:

 return _rnn_decoder(decoder_inputs, enc_state, cell,

_loop_function)

 else:

 return _rnn_decoder(decoder_inputs, enc_state, cell)

 def _loop_function(prev, _):

 '''''Naive implementation of loop function for _rnn_decoder.

Transform prev from

 dimension [batch_size x hidden_dim] to [batch_size x

output_dim], which will be

 used as decoder input of next time step '''

 return tf.matmul(prev, weights['out']) + biases['out']

 dec_outputs, dec_memory = _basic_rnn_seq2seq(

 enc_inp,

 dec_inp,

 cell,

 feed_previous = feed_previous

42

)

 reshaped_outputs = [tf.matmul(i, weights['out']) +

biases['out'] for i in dec_outputs]

 # Training loss

 with tf.variable_scope('Loss'):

 # Least Square Error (L2) loss

 output_loss = 0

 for _y, _Y in zip(reshaped_outputs, target_seq):

 output_loss += tf.reduce_mean(tf.pow(_y - _Y, 2))

 # L2 regularization for weights and biases

 reg_loss = 0

 for tf_var in tf.trainable_variables():

 if 'Biases_' in tf_var.name or 'Weights_' in tf_var.name:

 reg_loss += tf.reduce_mean(tf.nn.l2_loss(tf_var))

 loss = output_loss + lambda_l2_reg * reg_loss

 # Optimiser

 with tf.variable_scope('Optimizer'):

 optimizer = tf.contrib.layers.optimize_loss(

 loss=loss,

 learning_rate=learning_rate,

 global_step=global_step,

 optimizer='Adam',

 clip_gradients=GRADIENT_CLIPPING)

 saver = tf.train.Saver

 return dict(

 enc_inp = enc_inp,

 target_seq = target_seq,

 train_op = optimizer,

 loss=loss,

 saver = saver,

 reshaped_outputs = reshaped_outputs,

)

 # Training parameters

 total_iteractions = 100

 batch_size = 16

 # Create a training model

 rnn_model = build_graph(feed_previous=False)

 # Add ops to save and restore tf variables

 saver = tf.train.Saver()

 # Create a training tf session

 init = tf.global_variables_initializer()

 with tf.Session() as sess:

 sess.run(init)

 # Print training losses to see if training is working as intended

 print("Training losses: ")

 for i in range(total_iteractions):

 batch_input, batch_output =

generate_train_samples(batch_size=batch_size)

43

 feed_dict = {rnn_model['enc_inp'][t]: batch_input[:,t] for t in

range(input_seq_len)}

 feed_dict.update({rnn_model['target_seq'][t]: batch_output[:,t]

for t in range(output_seq_len)})

 _, loss_t = sess.run([rnn_model['train_op'],

rnn_model['loss']], feed_dict)

 print(loss_t)

 # Save

 temp_saver = rnn_model['saver']()

 save_path = temp_saver.save(sess, os.path.join('results/',

'Smart_City_Prediction'))

 # Print location

 print("Checkpoint saved at: ", save_path)

 # Create a testing model

 rnn_model = build_graph(feed_previous=True)

 # Create a testing tf session

 init = tf.global_variables_initializer()

 with tf.Session() as sess:

 sess.run(init)

 # Load

 saver = rnn_model['saver']().restore(sess,

os.path.join('results/', 'Smart_City_Prediction'))

 # Calculate and later print MSE

 feed_dict = {rnn_model['enc_inp'][t]: test_x[:, t, :] for t in

range(input_seq_len)} # batch prediction

 feed_dict.update({rnn_model['target_seq'][t]:

np.zeros([test_x.shape[0], output_dim], dtype=np.float32) for t in

range(output_seq_len)})

 final_preds = sess.run(rnn_model['reshaped_outputs'], feed_dict)

 final_preds = [np.expand_dims(pred, 1) for pred in final_preds]

 final_preds = np.concatenate(final_preds, axis = 1)

 print()

 print("Test MSE : ", np.mean((final_preds - test_y)**2))

 # Concatenate results into an array

 actual_y = np.concatenate([test_y[i].reshape(-1) for i in range(0,

test_y.shape[0], 5)], axis = 0)

 predicted_y = np.concatenate([final_preds[i].reshape(-1) for i in

range(0, final_preds.shape[0], 5)], axis = 0)

 # Save results into a csv file so we can create nice graphs later

 df = pd.DataFrame({"Actual" : actual_y, "Predicted" : predicted_y})

 df.to_csv("results.csv", index=False)

 # Plot a quick graph so we can see if eveything's all right

 plt.plot(predicted_y, color = 'blue', label = 'Predicted')

 plt.plot(actual_y, color = 'red', label = 'Actual')

 plt.title("Predicted against Actual for One Month")

 plt.legend(loc="upper left")

 plt.show()

	Final Report.pdf (p.1-47)
	Project Final Report Cover Page - Hasif Uzir.pdf (p.48)

